Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Phys Med Biol ; 69(5)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38266285

RESUMO

Objective.The aim of this work was to determine heterogeneous correction factorshQclin,Qreffclin,frefdetm,wto validate absorbed dose-to-mediumDm,Qclinm,fclincalculation algorithms from detector readings. The impact of detector orientation perpendicular and parallel to the beam central axis on the correction factors was also investigated.Approach.ThehQclin,Qreffclin,frefdetm,wfactors were calculated for four types of detectors (PTW PinPoint T31016, PTW microDiamond T60019, PTW microSilicon T60023 and EBT3 film) placed in different media (cortical bone, lung, adipose tissue, Teflon and RW3) for the 6 MV energy beam with a 10 × 10 cm2field size. These corrections were then applied to the detector measurements performed at different depths in heterogeneous phantoms.Main results.ThehQclin,Qreffclin,frefdetm,wfactors mainly depended on the media and slightly on the type of detector. Considering all detectors, the largest corrections were found in high-density media with values ranging from 0.911 to 0.934 in cortical bone. For comparison, the corrections in other media were closer to unity with values from 0.966 (lung and RW3) to 0.991 (adipose tissue). Except for the PinPoint T31016, detector orientation-dependence was observed especially in high-density media. A good agreement (≤1.5%) was found betweenDm,Qclinm,fclincalculations and the detector readings corrected with thehQclin,Qreffclin,frefdetm,wfactor for all studied heterogeneous phantoms.Significance.This paper could serve as an initial guideline for medical physicists involved in the validation of the advanced type-b dose calculation algorithms reportingDm,Qclinm,fclin. To our knowledge, this is the first study to assess the impact of the orientation of different detectors in heterogeneous media. The orientation dependence of the detector response observed in water may not reflect what is observed in heterogeneous media, especially in high-density media. The knowledge of thehQclin,Qreffclin,frefdetm,wfactors becomes mandatory for accurate interpretation of detector readings and comparisons withDm,Qclinm,fclincalculations.


Assuntos
Fótons , Radiometria , Radiometria/métodos , Método de Monte Carlo , Algoritmos , Imagens de Fantasmas
2.
Neuro Oncol ; 26(1): 153-163, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37417948

RESUMO

BACKGROUND: Glioblastoma (GBM) systematically recurs after a standard 60 Gy radio-chemotherapy regimen. Since magnetic resonance spectroscopic imaging (MRSI) has been shown to predict the site of relapse, we analyzed the effect of MRSI-guided dose escalation on overall survival (OS) of patients with newly diagnosed GBM. METHODS: In this multicentric prospective phase III trial, patients who had undergone biopsy or surgery for a GBM were randomly assigned to a standard dose (SD) of 60 Gy or a high dose (HD) of 60 Gy with an additional simultaneous integrated boost totaling 72 Gy to MRSI metabolic abnormalities, the tumor bed and residual contrast enhancements. Temozolomide was administered concomitantly and maintained for 6 months thereafter. RESULTS: One hundred and eighty patients were included in the study between March 2011 and March 2018. After a median follow-up of 43.9 months (95% CI [42.5; 45.5]), median OS was 22.6 months (95% CI [18.9; 25.4]) versus 22.2 months (95% CI [18.3; 27.8]) for HD, and median progression-free survival was 8.6 (95% CI [6.8; 10.8]) versus 7.8 months (95% CI [6.3; 8.6]), in SD versus HD, respectively. No increase in toxicity rate was observed in the study arm. The pseudoprogression rate was similar across the SD (14.4%) and HD (16.7%) groups. For O(6)-methylguanine-DNA methyltransferase (MGMT) methylated patients, the median OS was 38 months (95% CI [23.2; NR]) for HD patients versus 28.5 months (95% CI [21.1; 35.7]) for SD patients. CONCLUSION: The additional MRSI-guided irradiation dose totaling 72 Gy was well tolerated but did not improve OS in newly diagnosed GBM. TRIAL REGISTRATION: NCT01507506; registration date: December 20, 2011. https://clinicaltrials.gov/ct2/show/NCT01507506?cond=NCT01507506&rank=1.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Antineoplásicos Alquilantes/uso terapêutico , Estudos Prospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Imageamento por Ressonância Magnética
3.
Radiother Oncol ; 190: 110042, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043902

RESUMO

The results of phase II and III trials on Stereotactic Body Radiation Therapy (SBRT) increased adoption of SBRT worldwide. The ability to replicate clinical trial outcomes in routine practice depends on the capability to reproduce technical and dosimetric procedures used in the clinical trial. In this systematic review, we evaluated if peer-reviewed publications of clinical trials in SBRT reported sufficient technical data to ensure safe and robust implementation in real world clinics. Twenty papers were selected for inclusion, and data was extracted by a working group of medical physicists created following the ESTRO 2021 physics workshop. A large variability in technical and dosimetric data were observed, with frequent lack of required information for reproducing trial procedures. None of the evaluated studies were judged completely reproducible from a technical perspective. A list of recommendations has been provided by the group, based on the analysis and consensus process, to ensure an adequate reproducibility of technical parameters in primary SBRT clinical trials. Future publications should consider these recommendations to assist transferability of the clinical trial in real world practice.


Assuntos
Radiocirurgia , Humanos , Radiocirurgia/métodos , Reprodutibilidade dos Testes , Radiometria , Planejamento da Radioterapia Assistida por Computador/métodos
4.
Phys Med ; 114: 103141, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37820506

RESUMO

PURPOSE: To evaluate the impact of tuning the beam configurations parameters on the Analytical Anisotropic Algorithm (AAA) and the Acuros XB (AXB) algorithm for small fields using Monte Carlo simulations and measurements. METHODS: The TrueBeam STx with the high-definition 120 multi-leaf collimator (HD120-MLC) was modeled with Geant4 application for emission tomography (GATE) Monte Carlo platform and validated against measurements. The impact of varying the effective spot size (ESS) and dosimetric leaf gap (DLG) on AAA and AXB calculations was carried out for small MLC-fields ranging from 0.5×0.5 cm2 to 3 × 3 cm2. Beam penumbras, field sizes and output factors calculated by AAA and AXB were compared to GATE calculations and measurements. RESULTS: The beam penumbra comparisons showed that the best ESS value for AXB was about 1.0 mm in the crossplane direction and 0.5 mm in the inplane direction. By optimizing the ESS values, AXB could provide output factor results almost within 2% of GATE calculations and measurements for fields down to 0.5×0.5 cm2. For AAA, significant output factor differences were observed for all ESS values and tuning the DLG in addition to the ESS optimization resulted in an absorbed dose difference of less than 2.5% for MLC-fields down to 1 × 1 cm2. CONCLUSION: By optimizing the ESS values, AXB can achieve accurate output factors in the case of small MLC-fields without the need of DLG tuning. Nevertheless, compromises between the output factor, DLG and ESS values were found necessary for AAA calculations. A MLC model improvement would allow to avoid the complexity related to tuning the configuration parameters.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Dosagem Radioterapêutica , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Radiometria/métodos , Algoritmos , Radioterapia de Intensidade Modulada/métodos , Imagens de Fantasmas
5.
Radiother Oncol ; 186: 109775, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385376

RESUMO

PURPOSE: To demonstrate the feasibility of characterising MLCs and MLC models implemented in TPSs using a common set of dynamic beams. MATERIALS AND METHODS: A set of tests containing synchronous (SG) and asynchronous sweeping gaps (aSG) was distributed among twenty-five participating centres. Doses were measured with a Farmer-type ion chamber and computed in TPSs, which provided a dosimetric characterisation of the leaf tip, tongue-and-groove, and MLC transmission of each MLC, as well as an assessment of the MLC model in each TPS. Five MLC types and four TPSs were evaluated, covering the most frequent combinations used in radiotherapy departments. RESULTS: Measured differences within each MLC type were minimal, while large differences were found between MLC models implemented in clinical TPSs. This resulted in some concerning discrepancies, especially for the HD120 and Agility MLCs, for which differences between measured and calculated doses for some MLC-TPS combinations exceeded 10%. These large differences were particularly evident for small gap sizes (5 and 10 mm), as well as for larger gaps in the presence of tongue-and-groove effects. A much better agreement was found for the Millennium120 and Halcyon MLCs, differences being within ± 5% and ± 2.5%, respectively. CONCLUSIONS: The feasibility of using a common set of tests to assess MLC models in TPSs was demonstrated. Measurements within MLC types were very similar, but TPS dose calculations showed large variations. Standardisation of the MLC configuration in TPSs is necessary. The proposed procedure can be readily applied in radiotherapy departments and can be a valuable tool in IMRT and credentialing audits.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Imagens de Fantasmas , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos
6.
Phys Med Biol ; 67(8)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35294937

RESUMO

Objective.The aim of this study was to determine field output correction factorskQclin,Qreffclin,frefand electron fluence perturbation for new PTW unshielded microSilicon and shielded microSilicon X detectors.Approach.kQclin,Qreffclin,freffactors were calculated for 6 and 10 MV with and without flattening filter beams delivered by a TrueBeam STx. Correction factors were determined for field sizes ranging from 0.5 × 0.5 cm2to 3 × 3 cm2using both experimental and numerical methods. To better understand the underlying physics of their response, total electron (+positron) fluence spectra were scored in the sensitive volume considering the various component-dependent perturbations.Main results.The microSilicon and microSilicon X detectors can be used down to the smallest studied field size by applying corrections factors fulfilling the tolerance of 5% recommended by the IAEA TRS483. Electron fluence perturbation in both microSilicon detectors was greater than that in water but to a lesser extent than their predecessors. The main contribution of the overall perturbation of the detectors comes from the materials surrounding their sensitive volume, especially the epoxy in the case of unshielded diodes and the shielding for shielded diodes. This work demonstrated that the decrease in the density of the epoxy for the microSilicon led to a decrease in the electron fluence perturbation.Significance.A real improvement was observed regarding the design of the microSilicon and microSilicon X detectors compared to their predecessors.


Assuntos
Elétrons , Radiometria , Método de Monte Carlo , Fótons , Radiometria/métodos , Água
7.
Phys Med ; 89: 211-218, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34416389

RESUMO

PURPOSE: Monte Carlo (MC) is the reference computation method for medical physics. In radiotherapy, MC computations are necessary for some issues (such as assessing figures of merit, double checks, and dose conversions). A tool based on GATE is proposed to easily create full MC simulations of the Varian TrueBeam STx. METHODS: GAMMORA is a package that contains photon phase spaces as a pre-trained generative adversarial network (GAN) and the TrueBeam's full geometry. It allows users to easily create MC simulations for simple or complex radiotherapy plans such as VMAT. To validate the model, the characteristics of generated photons are first compared to those provided by Varian (IAEA format). Simulated data are also compared to measurements in water and heterogeneous media. Simulations of 8 SBRT plans are compared to measurements (in a phantom). Two examples of applications (a second check and interplay effect assessment) are presented. RESULTS: The simulated photons generated by the GAN have the same characteristics (energy, position, and direction) as the IAEA data. Computed dose distributions of simple cases (in water) and complex plans delivered in a phantom are compared to measurements, and the Gamma index (3%/3mm) was always superior to 98%. The feasibility of both clinical applications is shown. CONCLUSIONS: This model is now shared as a free and open-source tool that generates radiotherapy MC simulations. It has been validated and used for five years. Several applications can be envisaged for research and clinical purposes.


Assuntos
Fótons , Planejamento da Radioterapia Assistida por Computador , Simulação por Computador , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Água
8.
Phys Med ; 87: 73-82, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34120071

RESUMO

PURPOSE: In modulated radiotherapy, breathing motion can lead to Interplay (IE) and Blurring (BE) effects that can modify the delivered dose. The aim of this work is to present the implementation, the validation and the use of an open-source Monte-Carlo (MC) model that computes the delivered dose including these motion effects. METHODS: The MC model of the Varian TrueBeam was implemented using GATE. The dose delivered by different modulated plans is computed for several breathing patterns. A validation of these MC predictions is achieved by a comparison with measurements performed using a dedicated programmable motion platform, carrying a quality assurance phantom. A specific methodology was used to separate the IE and the BE. The influence of different motion parameters (period, amplitude, shape) and plan parameters (volume margin, dose per fraction) was also analyzed. RESULTS: The MC model was validated against measurement performed with motion with a mean 3D global gamma index pass rate of 97.5% (3%/3 mm). A significant correlation is found between the IE and the period and the antero-posterior amplitude of the motion but not between the IE and the CTV margin or the shape of motion. The results showed that the IE increases D2% and decreases the D98% of CTV with mean values of +6.9% and -3.3% respectively. CONCLUSIONS: We validated the feasibility to assess the IE using a MC model. We found that the most important parameter is the number of breathing cycles that must be greater than 20 for one arc to limit the IE.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica
9.
Med Phys ; 48(7): 3413-3424, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33932237

RESUMO

PURPOSE: To investigate (i) the dosimetric leaf gap (DLG) and the effect of the "trailing distance" between leaves from different multileaf collimator (MLC) layers in Halcyon systems and (ii) the ability of the currently available treatment planning systems (TPSs) to approximate this effect. METHODS: DICOM plans with transmission beams and sweeping gap tests were created in Python for measuring the DLG for each MLC layer independently and for both layers combined. In clinical Halcyon plans both MLC layers are interchangeably used and leaves from different layers are offset, thus forming a trailing pattern. To characterize the impact of such configuration, new tests called "trailing sweeping gaps" were designed and created where the leaves from one layer follow the leaves from the other layer at a fixed "trailing distance" t between the tips. Measurements were carried out on five Halcyons SX2 from different institutions and calculations from both the Eclipse and RayStation TPSs were compared with measurements. RESULTS: The dose accumulated during a sweeping gap delivery progressively increased with the trailing distance t . We call this "the trailing effect." It is most pronounced for t between 0 and 5 mm, although some changes were obtained up to 20 mm. The dose variation was independent of the gap size. The measured DLG values also increased with t up to 20 mm, again with the steepest variation between 0 and 5 mm. Measured DLG values were negative at t  = 0 (the leaves from both layers at the same position) but changed sign for t  ≥ 1 mm, in line with the positive DLG sign usually observed with single-layer rounded-end MLCs. The Eclipse TPS does not explicitly model the leaf tip and, as a consequence, could not predict the dose reduction due to the trailing effect. This resulted in dose discrepancies up to +10% and -8% for the 5 mm sweeping gap and up to ±5% for the 10 mm one depending on the distance t . RayStation implements a simple model of the leaf tip that was able to approximate the trailing effect and improved the agreement with measured doses. In particular, with a prototype version of RayStation that assigned a higher transmission at the leaf tip the agreement with measured doses was within ±3% even for the 5 mm gap. The five Halcyon systems behaved very similarly but differences in the DLG around 0.2 mm were found across different treatment units and between MLC layers from the same system. The DLG for the proximal layer was consistently higher than for the distal layer, with differences ranging between 0.10 mm and 0.24 mm. CONCLUSIONS: The trailing distance between the leaves from different layers substantially affected the doses delivered by sweeping gaps and the measured DLG values. Stacked MLCs introduce a new level of complexity in TPSs, which ideally need to implement an explicit model of the leaf tip in order to reproduce the trailing effect. Dynamic tests called "trailing sweeping gaps" were designed that are useful for characterizing and commissioning dual-layer MLC systems.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Folhas de Planta , Radiometria , Dosagem Radioterapêutica
10.
Phys Med Biol ; 66(4): 045009, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33296874

RESUMO

The benefits of using an algorithm that reports absorbed dose-to-medium have been jeopardized by the clinical experience and the experimental protocols that have mainly relied on absorbed dose-to-water. The aim of the present work was to investigate the physical aspects that govern the dosimetry in heterogeneous media using Monte Carlo method and to introduce a formalism for the experimental validation of absorbed dose-to-medium reporting algorithms. Particle fluence spectra computed within the sensitive volume of two simulated detectors (T31016 Pinpoint 3D ionization chamber and EBT3 radiochromic film) placed in different media (water, RW3, lung and bone) were compared to those in the undisturbed media for 6 MV photon beams. A heterogeneity correction factor that takes into account the difference between the detector perturbation in medium and under reference conditions as well as the stopping-power ratios was then derived for all media using cema calculations. Furthermore, the different conversion approaches and Eclipse treatment planning system algorithms were compared against the Monte Carlo absorbed dose reports. The detectors electron fluence perturbation in RW3 and lung media were close to that in water (≤1.5%). However, the perturbation was greater in bone (∼4%) and impacted the spectral shape. It was emphasized that detectors readings should be corrected by the heterogeneity correction factor that ranged from 0.932 in bone to 0.985 in lung. Significant discrepancies were observed between all the absorbed dose reports and conversions, especially in bone (exceeding 10%) and to a lesser extent in RW3. Given the ongoing advances in dose calculation algorithms, it is essential to standardize the absorbed dose report mode with absorbed dose-to-medium as a favoured choice. It was concluded that a retrospective conversion should be avoided and switching from absorbed dose-to-water to absorbed dose-to-medium reporting algorithm should be carried out by a direct comparison of both algorithms.


Assuntos
Fótons , Doses de Radiação , Projetos de Pesquisa/normas , Algoritmos , Humanos , Método de Monte Carlo , Padrões de Referência , Água
11.
Phys Med ; 78: 117-122, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32980588

RESUMO

PURPOSE: This study aims at investigating the dosimetric characteristics of a Varian aS1000 EPID, focusing on its continuous acquisition mode under the challenging conditions that can be met in stereotactic radiotherapy verification. METHODS: An aS1000 EPID installed on a Varian TrueBeamSTx was irradiated with 6 and 10 MV unflattened and flattened photon beams. In order to avoid detector saturation, the source-to-detector distance (SDD) was set to 150 or 180 cm depending on the dose rate. EPID image sets were acquired in continuous mode (CM) and also in the commonly used integrated mode (IM) for comparison, to evaluate dose linearity (including dose rate dependence), repeatability, reproducibility, stability, ghosting effect and field size dependence. RESULTS: CM response linearity was found to be within 0.8% of IM and independent of dose rate. Response repeatability was slightly better for IM and FF beams, being in all cases within 0.9%. Reproducibility was within 0.6% for both modes and all beam qualities. Response stability between continuous frames varied within 1% for dynamic and static irradiations and for all the beam qualities, showing its independence from these parameters. Ghosting effect was not significant, being comparable to signal variations between continuous frames (±1%). Field size dependence in both modes agreed within 1%. CONCLUSIONS: The dosimetric response of the aS1000 EPID in CM with FFF beams and high dose rates is comparable to that in IM and for flattened beams provided that the appropriate SDD is used. aS1000 EPID in continuous acquisition mode is therefore suitable for stereotactic applications.


Assuntos
Radioterapia de Intensidade Modulada , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes
12.
Phys Med Biol ; 64(19): 195016, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31437832

RESUMO

The method implemented in Monte Carlo (MC) algorithm to convert dose-to-medium (D m) to dose-to-water (D w) is usually based on the Bragg-Gray cavity theory. Acuros XB (AXB) reports also D m and D w but the method to calculate D w is based on the energy deposition cross sections for water in place of those for the local media. For both algorithms, the calculation of D w in non-water media is similar to the dose received in a small volume of water, small enough not to disturb the fluence of charged particles. Recently, two new methods revised the Bragg-Gray cavity theory, one proposed by Andreo and the other by Reynaert et al. In this context, comparisons between AXB and MC were carried out in terms of dose-to-medium ([Formula: see text]) and dose-to-water ([Formula: see text]), respectively. Multilayer slab heterogeneous phantoms made of lung, bone and polytetrafluoroethylene (PTFE) were investigated and measurements were carried out using radiochromic films. These latter were then compared to [Formula: see text] and to D w which would be obtained according to the conversion methods proposed by Andreo and Reynaert et al [Formula: see text] agreed with [Formula: see text] for all cases (±1%). In lung, all D w calculations and film measurements were in agreement. By contrast, [Formula: see text] and [Formula: see text] differed notably in bone (4.5%) and PTFE (3.5%), and both algorithms overestimated film measurements. These findings demonstrate that the conversion method is different between AXB and MC. Furthermore, films were not able to give dose in a small volume of water according to the definition of [Formula: see text] and [Formula: see text]. Applying either the fluence correction factor suggested by Andreo or the mass energy absorption ratios proposed by Reynaert et al, resulted in a good agreement (<1%) with film measurements. According to the method used for the conversion, different D w could be obtained which might lead to several issues in clinical context.


Assuntos
Osso e Ossos/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Método de Monte Carlo , Imagens de Fantasmas , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Politetrafluoretileno/química , Água
13.
J Appl Clin Med Phys ; 20(7): 68-77, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31225938

RESUMO

The dosimetric leaf gap (DLG) and tongue-and-groove (T&G) effects are critical aspects in the modeling of multileaf collimators (MLC) in the treatment planning system (TPS). In this study, we investigated the dosimetric impact of limitations associated with the T&G modeling in stereotactic plans and its relationship with the need for tuning the DLG in the Eclipse TPS. Measurements were carried out using Varian TrueBeam STx systems from two different institutions. Test fields presenting MLC patterns with several MLC gap sizes (meanGap) and different amounts of T&G effect (TGi) were first evaluated. Secondly, dynamic conformal arc (DCA) and volumetric modulated arc therapy (VMAT) deliveries of stereotactic cases were analyzed in terms of meanGap and TGi. Two DLG values were used in the TPS: the measured DLG (DLGmeas ) and an optimal DLG (DLGopt ). Measured and calculated doses were compared according to dose differences and gamma passing rates (GPR) with strict local gamma criteria of 2%/2 mm. The discrepancies were analyzed for DLGmeas and DLGopt , and their relationships with both TGi and meanGap were investigated. DCA arcs involved significantly lower TGi and larger meanGap than VMAT arcs (P < 0.0001). By using DLGmeas in the TPS, the dose discrepancies increased as TGi increased and meanGap decreased for both test fields and clinical plans. Dose discrepancies dramatically increased with the ratio TGi/meanGap. Adjusting the DLG value was then required to achieve acceptable calculations and configuring the TPS with DLGopt led to an excellent agreement with median GPRs (2%/2 mm) > 99% for both institutions. We also showed that DLGopt could be obtained from the results of the test fields. We demonstrated that the need for tuning the DLG is due to the limitations of the T&G modeling in the Eclipse TPS. A set of sweeping gap tests modified to incorporate T&G effects can be used to determine the optimal DLG value.


Assuntos
Neoplasias Encefálicas/cirurgia , Neoplasias Pulmonares/cirurgia , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/patologia , Humanos , Neoplasias Pulmonares/patologia , Órgãos em Risco/efeitos da radiação , Prognóstico , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
14.
BMC Cancer ; 19(1): 167, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30791889

RESUMO

BACKGROUND: Glioblastoma, a high-grade glial infiltrating tumor, is the most frequent malignant brain tumor in adults and carries a dismal prognosis. External beam radiotherapy (EBRT) increases overall survival but this is still low due to local relapses, mostly occurring in the irradiation field. As the ratio of spectra of choline/N acetyl aspartate> 2 (CNR2) on MR spectroscopic imaging has been described as predictive for the site of local relapse, we hypothesized that dose escalation on these regions would increase local control and hence global survival. METHODS/DESIGN: In this multicenter prospective phase III trial for newly diagnosed glioblastoma, 220 patients having undergone biopsy or surgery are planned for randomization to two arms. Arm A is the Stupp protocol (EBRT 60 Gy on contrast enhancement + 2 cm margin with concomitant temozolomide (TMZ) and 6 months of TMZ maintenance); Arm B is the same treatment with an additional simultaneous integrated boost of intensity-modulated radiotherapy (IMRT) of 72Gy/2.4Gy delivered on the MR spectroscopic imaging metabolic volumes of CHO/NAA > 2 and contrast-enhancing lesions or resection cavity. Stratification is performed on surgical and MGMT status. DISCUSSION: This is a dose-painting trial, i.e. delivery of heterogeneous dose guided by metabolic imaging. The principal endpoint is overall survival. An online prospective quality control of volumes and dose is performed in the experimental arm. The study will yield a large amount of longitudinal multimodal MR imaging data including planning CT, radiotherapy dosimetry, MR spectroscopic, diffusion and perfusion imaging. TRIAL REGISTRATION: NCT01507506 , registration date December 20, 2011.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/terapia , Quimiorradioterapia , Glioblastoma/terapia , Radioterapia de Intensidade Modulada/métodos , Temozolomida/uso terapêutico , Adulto , Neoplasias Encefálicas/mortalidade , Diagnóstico por Imagem , Glioblastoma/mortalidade , Humanos , Espectroscopia de Ressonância Magnética , Recidiva Local de Neoplasia , Estudos Prospectivos , Dosagem Radioterapêutica , Análise de Sobrevida
15.
Phys Med Biol ; 63(24): 245005, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30523940

RESUMO

Commercial TPSs typically model the tongue-and-groove (TG) by extending the projections of the leaf sides by a certain constant width. However, this model may produce discrepancies of as much as 7%-10% in the calculated average doses, especially for the High Definition multi-leaf collimator (MLC) (Hernandez et al 2017 Phys. Med. Biol. 62 6688-707). The purpose of the present study is to introduce and validate a new method for modelling the TG that uses a non constant TG width. We provide the theoretical background and a detailed methodology to determine the optimal shape of this TG width from measurements and we fit an empirical function to the TG width that depended on two parameters [Formula: see text] and [Formula: see text]. Parameter [Formula: see text] represents the TG width and [Formula: see text] introduces a curvature correction in the width near the leaf tip end. The new TG model was implemented in MATLAB and when the curvature correction was zero ([Formula: see text]) it caused the same discrepancies as the constant width model used by the Eclipse TPS. On the other hand, when the experimentally determined [Formula: see text] was used the new model's calculations were in close agreement with measurements, with all differences in average doses [Formula: see text]1%. Additionally, film dosimetry was used to successfully validate the potential of the new TG model to recreate the fine spatial details associated to TG effects. We also showed that the parameters [Formula: see text], [Formula: see text] depend solely on the MLC design by evaluating three different linear accelerators for each MLC model considered, namely Varian's High Definition and Millennium120 MLCs. In conclusion, a new method was presented that greatly improves the TG modelling. The present method can be easily implemented in commercial TPSs and has the potential to further increase their accuracy, especially for MLCs with rounded leaf ends.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Dosagem Radioterapêutica
16.
Phys Med Biol ; 62(16): 6688-6707, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28639942

RESUMO

Adequate modelling of the multi-leaf collimator (MLC) by treatment planning systems (TPS) is essential for accurate dose calculations in intensity-modulated radiation-therapy. For this reason modern TPSs incorporate MLC characteristics such as the leaf end curvature, MLC transmission and the tongue-and-groove. However, the modelling of the tongue-and-groove is often neglected during TPS commissioning and it is not known how accurate it is. This study evaluates the dosimetric consequences of the tongue-and-groove effect for two different MLC models using both film dosimetry and ionisation chambers. A set of comprehensive tests are presented that evaluate the ability of TPSs to accurately model this effect in (a) static fields, (b) sliding window beams and (c) VMAT arcs. The tests proposed are useful for the commissioning of TPSs and for the validation of major upgrades. With the ECLIPSE TPS, relevant differences were found between calculations and measurements for beams with dynamic MLCs in the presence of the TG effect, especially for the High Definition MLC, small gap sizes and the 1 mm calculation grid. For this combination, dose differences as high as 10% and 7% were obtained for dynamic MLC gaps of 5 mm and 10 mm, respectively. These differences indicate inadequate modelling of the tongue-and-groove effect, which might not be identified without the proposed tests. In particular, the TPS tended to underestimate the calculated dose, which may require tuning of other configuration parameters in the TPS (such as the dosimetric leaf gap) in order to maximise the agreement between calculations and measurements in clinical plans. In conclusion, a need for better modelling of the MLC by TPSs is demonstrated, one of the relevant aspects being the tongue-and-groove effect. This would improve the accuracy of TPS calculations, especially for plans using small MLC gaps, such as plans with small target volumes or high complexities. Improved modelling of the MLC would also reduce the need for tuning parameters in the TPS, facilitating a more comprehensive configuration and commissioning of TPSs.


Assuntos
Modelos Biológicos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada , Humanos , Radiometria , Dosagem Radioterapêutica
17.
Phys Med ; 32(11): 1405-1414, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27756535

RESUMO

PURPOSE: Flattening filter free (FFF) beams are frequently used for stereotactic body radiation therapy with various treatment modalities: conventional static fields, dynamic conformal arc (DCA) or Rapid Arc (RA). The goal of this study was to obtain some criteria to enable a conscious choice of the employment of FFF beams and of the DCA or RA technique, depending on the PTV size. METHODS AND MATERIALS: 24 PTVs from 1.52cm3 to 445.24cm3 were studied in various sites: virtual phantom, lung and liver. For each PTV, DCA and RA plans were prepared using two flattened (FF) and two unflattened photon beams. Parameters such as conformity index, gradient index, healthy-tissue and organs at risk mean doses, number of monitor units (MU), beam on time (BOT) were used to quantify obtained dose distributions. Friedman tests and Spearman's rank correlation coefficients were also performed. RESULTS: No significant differences were found between FF and FFF beams for RA regarding conformity and gradient indices. For DCA, 10FFF is less suitable and forward planning becomes more challenging as PTV volume increases. FFF beams provided a better sparing of healthy-tissues except for 10FFF used with DCA. 6FFF was slightly better than 10FFF in terms of healthy-tissue mean doses. FFF beams generated significantly reduced BOTs and increased MUs. These effects were more pronounced for larger volumes and especially for RA plans. CONCLUSIONS: FFF showed better results than FF beams for the considered plans. 10FFF used with DCA should be used with caution for medium and large volumes.


Assuntos
Radiocirurgia/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Neoplasias Hepáticas/radioterapia , Neoplasias Pulmonares/radioterapia , Imagens de Fantasmas , Radiometria , Planejamento da Radioterapia Assistida por Computador
18.
Phys Med ; 31(7): 720-5, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26095758

RESUMO

PURPOSE: To compare detectors for dosimetric verification before VMAT treatments and evaluate their sensitivity to errors. METHODS AND MATERIALS: Measurements using three detectors (ArcCheck, 2d array 729 and EPID) were used to validate the dosimetric accuracy of the VMAT delivery. Firstly, performance of the three devices was studied. Secondly, to assess the reliability of the detectors, 59 VMAT treatment plans from a variety of clinical sites were considered. Thirdly, systematic variations in collimator, couch and gantry angle plus MLC positioning were applied to four clinical treatments (two prostate, two head and neck cases) in order to establish the detection sensitivity of the three devices. Measurements were compared with TPS computed doses via gamma analysis (3%/3 mm and 2%/2 mm) with an agreement of at least 95% and 90% respectively in all pixels. Effect of the errors on the dose distributions was analyzed. RESULTS: Repeatability and reproducibility were excellent for the three devices. The average pass rate for the 59 cases was superior to 98% for all devices with 3%/3 mm criteria. It was found that for the plans delivered with errors, the sensitivity was quite similar for all devices. Devices were able to detect a 2 mm opened or closed MLC error with 3%/3 mm tolerance level. An error of 3° in collimator, gantry or couch rotation was detected by the three devices using 2%/2 mm criteria. CONCLUSIONS: All three devices have the potential to detect errors with more or less the same threshold. Nevertheless, there is no guarantee that pretreatment QA will catch delivery errors.


Assuntos
Erros Médicos/prevenção & controle , Radioterapia de Intensidade Modulada/normas , Humanos , Neoplasias/radioterapia , Controle de Qualidade , Radiometria , Radioterapia de Intensidade Modulada/instrumentação , Rotação
19.
Rep Pract Oncol Radiother ; 20(2): 135-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859404

RESUMO

AIM: To investigate the feasibility of dose escalation using rapid arc (RA) and Helical Tomotherapy (HT) for patients with upper, middle and distal esophageal carcinomas, even for large tumor volumes. BACKGROUND: In esophageal cancer, for patients with exclusive radio-chemotherapy, local disease control remains poor. Planning study with dose escalation was done for two sophisticated modulated radiotherapy techniques: Rapid arc against Tomotherapy. MATERIALS AND METHODS: Six patients treated with a RA simultaneous integrated boost (SIB) of 60 Gy were re-planned for RA and HT techniques with a SIB dose escalated to 70 Gy. Dose volume histogram statistics, conformity indices and homogeneity indices were analyzed. For a given set of normal tissue constraints, the capability of each treatment modality to increase the GTV dose to 70 Gy was investigated. RESULTS: Either HT or VMAT may be used to escalate the dose delivered in esophageal tumors while maintaining the spinal cord, lung and heart doses within tolerance. Adequate target coverage was achieved by both techniques. Typically, HT achieved better lung sparing and PTV coverage than did RA. CONCLUSIONS: Dose escalation for esophageal cancer becomes clinically feasible with the use of RA and HT. This promising result could be explored in a carefully controlled clinical study which considered normal tissue complications and tumor control as endpoints.

20.
Strahlenther Onkol ; 191(3): 225-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25367098

RESUMO

PURPOSE: The purpose of this work was to retrospectively determine the value of intensity-modulated radiotherapy (IMRT) in patients with laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC), on outcome and treatment-related toxicity compared to 3-dimensional conformal radiotherapy (3D-CRT). MATERIALS AND METHODS: A total of 175 consecutive patients were treated between 2007 and 2012 at our institution with curative intent RT and were included in this study: 90 were treated with 3D-CRT and 85 with IMRT. Oncologic outcomes were estimated using Kaplan-Meier statistics; acute and late toxicities were scored according to the Common Toxicity Criteria for Adverse Events scale v 3.0. RESULTS: Median follow-up was 35 months (range 32-42 months; 95% confidence interval 95%). Two-year disease-free survival did not vary, regardless of the technique used (69% for 3D-CRT vs. 72%; for IMRT, p = 0.16). Variables evaluated as severe late toxicities were all statistically lower with IMRT compared with 3D-CRT: xerostomia (0 vs. 12%; p < 0.0001), dysphagia (4 vs. 26 %; p < 0.0001), and feeding-tube dependency (1 vs 13%; p = 0.0044). The rates of overall grade ≥ 3 late toxicities for the IMRT and 3D-CRT groups were 4.1 vs. 41.4%, respectively (p < 0.0001). CONCLUSION: IMRT for laryngeal and hypopharyngeal cancer minimizes late dysphagia without jeopardizing tumor control and outcome.


Assuntos
Carcinoma de Células Escamosas/radioterapia , Transtornos de Deglutição/prevenção & controle , Neoplasias Hipofaríngeas/radioterapia , Neoplasias Laríngeas/radioterapia , Lesões por Radiação/prevenção & controle , Radioterapia de Intensidade Modulada/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Terapia Combinada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Radioterapia Adjuvante , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...